
Ordering Tricks in SQL

By: Tom Muck

A database is like a book with no index--you store information in it, but unless you know how to get it out
in a particular order, it's not going to be very useful. Ordering is one of the most often used aspects of
SQL, yet one of the most under-used parts of the SQL language at the same time. You can often do some
really cool things through simple ordering of your data, and present the data in a different way. This
article addresses ordering for database queries in any situation, whether it's in a stored procedure, or in
inline SQL code in an ASP, ASP.NET, PHP, ColdFusion, or JSP page.

Note: The code shown has been tested in MS SQL Server, but will work in other databases that support
the syntax. In many cases, if your database does not support certain keywords, you might be able to find
an similar method of doing the same thing using equivalent functionality. MS Access queries are also
shown when possible.

You might be able to improve the accuracy of the ordering, such as in this listing of titles:

'A Tale of Two Cities'
'Dreamweaver MX: The Complete Reference'
'The Andromeda Strain'

Obviously, this listing is ordered alphabetically, but it is all wrong because of the insignificant words ('A',
'The') in the example. I'll address correct ordering of titles in this article.

Another area that is often neglected is the ordering of numbers that are stored as varchar, nvarchar, text,
or other textual data type values. Take this listing as an example:

ID,Name
'1','Tom'
'10','Jack'
'100','Steve'
'2','Jim'
'20','Frank'

The numbers are ordered alphabetically, which puts them out of order as numbers. This will be addressed
in the article.

Forcing an order will be addressed: you can force data to be ordered based on some pre-defined criteria
that you set up. There are many uses for this type of ordering, and I will show you a few examples.

Ordering within a subgroup will be addressed. What do I mean by that? Well, consider this list of data:

'10','1','Tom','Muck'
'20','1','ColdFusion'
'20','1','Flash Remoting'
'10','2','Ray','West'
'20','2','Dreamweaver MX'
'20','2','ASP.NET'
'20','2','SQL Server'
'20','2','Content Management'
'10','3','Massimo','Foti'
'20','3','ColdFusion'
'20','3','JavaScript'
'20','3','Dreamweaver MX'

This set of data does not follow the standard relational data model -- it is transactional data. The rows that
begin with a '10' are the key rows and the rows that begin with '20' are the data (or line item rows) for each
key row. They are linked by the record numbers in the second column. If we want to order the data by the
last name of the '10' row, then by the third field in the '20' row, we might have a hard time coming up with
one SQL statement that will do the trick.

Database tools are not going to help you build sorts like this, nor are the query building tools of
Dreamweaver MX, CF Studio, or other web development programs. They each require hand-coding of
your SQL. After having built the query, however, you can easily create a stored procedure out of it or
paste it into Dreamweaver MX when creating a recordset.

Ordering by Titles

The proper way to organize a series of book, article, or movie titles involves alphabetizing by the first
significant word, or removing certain common words that may be at the beginning of your title. The
English words commonly removed from a sort would be: a, an, the. Other languages may vary, but the
concept is the same. If your data is not stored in this way, however, you will have a hard time coming up
with a sort order that can be easily browsed by your end user.

Enter SQL.

Using Structured Query Language you can carefully structure the way that the title is sorted and
displayed. Some variations on SQL do not allow this type of query (Access, for example) but the majority
of RDBMS do. There are three main principles involved with this type of sort:

Using the CASE statement*.1.
Using string manipulation.2.
Using an alias for a column.3.

*CASE is not supported in MS Access. Sometimes you can use IIF instead of CASE.

These are three of the basic constructs in SQL coding that will make the job easy.

I will be using the SQL Server Pubs database as an example, but you can use any table in any database
that has a title column. Using the Titles table as an example, I can write the following SQL statement:

SELECT title, price
FROM titles
ORDER BY title

That gives me the following results:

Title Price

But Is It User Friendly? 22.9500

Computer Phobic AND Non-Phobic Individuals: Behavior Variations 21.5900

Cooking with Computers: Surreptitious Balance Sheets 11.9500

Emotional Security: A New Algorithm 7.9900

Fifty Years in Buckingham Palace Kitchens 11.9500

Is Anger the Enemy? 10.9500

Life Without Fear 7.0000

Net Etiquette NULL

Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 20.9500

Prolonged Data Deprivation: Four Case Studies 19.9900

Secrets of Silicon Valley 20.0000

Silicon Valley Gastronomic Treats 19.9900

Straight Talk About Computers 19.9900

Sushi, Anyone? 14.9900

The Busy Executive's Database Guide 19.9900

The Gourmet Microwave 2.9900

The Psychology of Computer Cooking NULL

You Can Combat Computer Stress! 2.9900

You can see the the word "The" is in 3 of the titles, which completely nullify the sort order. Using a
CASE statement and string manipulation, we can pull the first several characters off the front of the title
and do things if the word is "a", "an", or "the". First, the string manipulation. Different databases will have
different syntax, but this works in SQL Server. What you want to do is test the first two characters for "a
", the first three characters for "an ", and the first four characters for "the ", and perform a different action
for each of these. You'll pull the word off the beginning of the title and put it at the end, using a preceding
comma. You'll then set the new "title" field to an alias named "newtitle". Here is the code:

SELECT NewTitle =

CASE Left(Title, 4)
 WHEN 'The '
 Then Right(Title, len(Title)-4) + ', The'
 WHEN 'An _'
 Then Right(Title, len(Title)-2) + ', An'
 WHEN 'A __'
 Then Right(Title, len(Title)-2) + ', A'
ELSE
 Title
END

, price
FROM titles
ORDER BY NewTitle

Basically we are looking at the first 4 characters of the title, which is pulled off the Title column with a
LEFT(Title, 4). You can see what follows next. Each variation on insignificant words (the, a, an) is given
a separate condition, with the _ character filling in for a single character that can be anything. Finally, the
default case is to use the title with no alteration. Lastly, we order by the column alias NewTitle rather than
Title. This gives us the results we want:

Title Price

Busy Executive's Database Guide, The 19.9900

But Is It User Friendly? 22.9500

Computer Phobic AND Non-Phobic Individuals: Behavior Variations 21.5900

Cooking with Computers: Surreptitious Balance Sheets 11.9500

Emotional Security: A New Algorithm 7.9900

Fifty Years in Buckingham Palace Kitchens 11.9500

Gourmet Microwave, The 2.9900

Is Anger the Enemy? 10.9500

Life Without Fear 7.0000

Net Etiquette NULL

Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 20.9500

Prolonged Data Deprivation: Four Case Studies 19.9900

Psychology of Computer Cooking, The NULL

Secrets of Silicon Valley 20.0000

Silicon Valley Gastronomic Treats 19.9900

Straight Talk About Computers 19.9900

Sushi, Anyone? 14.9900

You Can Combat Computer Stress! 2.9900

Picking the first 4 characters allowed us to simplify the CASE statement, rather than picking first 4 for
"the ", first 3 for "an ", and first 2 for "a ".

In MS Access you would not be able to code a query easily that accomplished this same thing, because the
basic construct of the IIF statement only allows two possible outcomes, whereas CASE gives you an
infinite number of options. To create a similar query in MS Access that only checks for the word "The ",
the following will work:

SELECT IIF(Left(Title,4) = 'The ',Right(Title, len(Title)-4) + ', The', title)
 as newtitle
, price
FROM dbo_titles
ORDER BY
IIF(Left(Title,4) = 'The ',Right(Title, len(Title)-4) + ', The', title)

Ordering a Text Field as Numeric

Once in a while you will find that you have a database column stored as text when in fact your values are
all numbers. If you try to sort the field with a SQL statement like this

SELECT ID, Name from MyTable
ORDER BY ID

you will end up with a sort order like this:

ID Name

1 Tom

10 Jack

100 Steve

2 Jim

20 Frank

To be able to sort the ID field numerically, you need to be able to covert the data into numeric data.
Again, databases such as MS Access will not support this on-the-fly conversion of data types, but most
modern RDBMS systems do. To sort the ID column numerically rather than alphabetically, you can
simply CAST the resulting column in your ORDER BY statement as a number:

SELECT ID, Name from MyTable
ORDER BY CAST(ID as int)

Now your sort looks like this:

ID Name

1 Tom

2 Jim

10 Jack

20 Frank

100 Steve

To implement a workaround in MS Access, you can use SUM on the ORDER BY clause, but you also
have to group your query by all fields:

SELECT ID, Name
FROM MyTable
GROUP BY id, Name
ORDER BY sum(ID);

Forcing Numerics to Sort When Combined with Text

What if your data contains some numbers and some text characters? Well, unfortunately in basic SQL you
are out of luck because there is no way to extract parts of fields easily. The SQL language does not
contain regular expressions. You could create a function that removes the numeric characters and puts
them into another field, then sorts numerically, but it is not an easy proposition, given the possible varying
lengths of the numeric portion of the number.

If you know that the text portion of the data is the same length, however, the SQL can be easily written.
Take a look at this sample data:

id Name user_id

1 Tom user1

3 Jess user10

5 Jim user11

4 Mike user12

2 Frank user2

6 Bruce user20

7 Clint user21

8 Tony user8

You can see the user_id field is part numeric and part text. If you wanted to sort on the text portion, but
also keep the numeric portion in numeric order, this would be easy in SQL, because the text portion is 4
characters in every row:

SELECT id, Name, user_id
FROM SampleNumeric
ORDER BY CAST(RIGHT(user_id, len(user_id)-4) as int)

In this query we are simply taking the portion of the field that begins at the 5th character by choosing the
RIGHT portion of the field using the length of the field minus 4. The MS Access version of the same
query would look like this:

SELECT id, Name, user_id
FROM SampleNumeric
GROUP BY id, name, user_id
ORDER BY SUM(RIGHT(user_id, len(user_id)-4));

What if the text portion was varying in length, however? We can do this in SQL Server and other
databases that support PATINDEX and REVERSE (or their equivalents) but not MS Access. The
following table contains a user_id field that has varying length text followed by number. The user_id field
is in alphabetical order:

id Name user_id

2 Frank alexandria2

6 Bruce alexandria20

7 Clint alexandria21

1 Tom buffalo1

3 Jess buffalo10

5 Jim buffalo11

4 Mike buffalo12

8 Tony buffalo8

Now it becomes tricky without regular expressions. The SQL to pull the numeric portion out of the field is
a little trickier, but it can be done. The following SQL will sort the data on the numeric portion of user_id
only:

SELECT id, Name, user_id
FROM SampleNumeric2
ORDER BY
CAST(
RIGHT(user_id, PATINDEX('%[0-9][^0-9]%', REVERSE(user_id))
) as int)

This gives the result:

id Name user_id

1 Tom buffalo1

2 Frank alexandria2

8 Tom buffalo8

3 Jess buffalo10

5 Jim buffalo11

4 Mike buffalo12

6 Bruce alexandria20

7 Clint alexandria21

Let's examine the SQL: The CAST() function is just like you've seen in the other examples. We will cast
the result of the inner expression as an integer. The PATINDEX and REVERSE functions are doing

something strange though:

CAST(
RIGHT(user_id, PATINDEX('%[0-9][^0-9]%', REVERSE(user_id))
) as int)

Look at REVERSE first: this reverses the string in the field so that the numbers are first. Because we don't
have regular expressions in SQL, it is difficult to pick the first occurrence of a range of characters. After
reversing the characters, the PATINDEX function returns the LAST numeric character it finds. This is
made possible by the use of the wildcard % in the first character position to find any character, the range
of characters to search for in the next position [0-9] (which finds one character), and the range of
characters NOT to search for [^0-9] (one character, once again.)

That is good if you need it sorted ONLY numerically, but what if you want it sorted on the numeric AND
text portion? The following SQL will do that:

SELECT id, Name, user_id
FROM SampleNumeric2 /**/
ORDER BY
LEFT(user_id, len(user_id)-patindex('%[0-9][^0-9]%',reverse(user_id))),
CAST(
RIGHT(user_id, patindex('%[0-9][^0-9]%',reverse(user_id))
) as int)

The query will return the results intended:

id Name user_id

2 Frank alexandria2

6 Bruce alexandria20

7 Clint alexandria21

1 Tom buffalo1

8 Tony buffalo8

3 Jess buffalo10

5 Jim buffalo11

4 Mike buffalo12

The query is based on the previous query, but includes the exact opposite functionality in the first ORDER
BY clause to return the alphabetic portion of the field:

LEFT(user_id, len(user_id)-patindex('%[0-9][^0-9]%',reverse(user_id)))

The number of numeric characters is subtracted from the length of the field to yield a result of ONLY text
characters that we know are in the field.

These types of queries only work if you know what kind of data you can expect in the field, such as text
characters followed by numeric characters. Any mixing of characters that you can't predict makes a query
like this fail.

Forcing Numeric Characters to the Bottom of a Sort

One thing that you can do easily though is to force the fields that begin with numeric characters to the
bottom of your listing, rather than display at the top. If you want to force the rows to the bottom, try this:

SELECT ProductName
FROM Products
ORDER BY ISNUMERIC(left(productname,1))
, productname

Here you are creating a new unnamed column to sort by: the code

ISNUMERIC(left(productname, 1))

will return a 1 or a 0 depending on whether the first letter of the field is a number or not. If it is, the return
value is 1. If it isn't, the return value is 0. Since you are sorting on that field first, all the 0s will rise to the
top. The 1s will fall to the bottom. An MS Access version of this query might look like this:

SELECT ProductName
FROM Products
ORDER BY IIF(left(ProductName,1) < 'a',1,0), ProductName

Forcing a Specific Value to the Top or Bottom

Just as you can force the numeric values to the bottom of your resultset in the previous example, you can
force any specific value to the top or bottom of the results in the same way. For example, the Employee
table in the Pubs database contains employee names (the fname and lname fields) with employee id
numbers (the emp_id field). The IDs have two different formats, if you examine the data. Some of the
emp_id fields contain a letter followed by a dash character and several other letters. Some are made up
entirely of characters. To order on emp_id, you would use this SQL:

SELECT emp_id, fname, lname
FROM employee
ORDER BY emp_id,lname, fname

You would get these results:

emp_id fname lname

A-C71970F Aria Cruz

A-R89858F Annette Roulet

AMD15433F Ann Devon

ARD36773F Anabela Domingues

CFH28514M Carlos Hernadez

CGS88322F Carine Schmitt

DBT39435M Daniel Tonini

DWR65030M Diego Roel

ENL44273F Elizabeth Lincoln

F-C16315M Francisco Chang

GHT50241M Gary Thomas

H-B39728F Helen Bennett

HAN90777M Helvetius Nagy

HAS54740M Howard Snyder

JYL26161F Janine Labrune

KFJ64308F Karin Josephs

KJJ92907F Karla Jablonski

L-B31947F Lesley Brown

LAL21447M Laurence Lebihan

M-L67958F Maria Larsson

M-P91209M Manuel Pereira

M-R38834F Martine Rance

MAP77183M Miguel Paolino

MAS70474F Margaret Smith

MFS52347M Martin Sommer

MGK44605M Matti Karttunen

MJP25939M Maria Pontes

MMS49649F Mary Saveley

PCM98509F Patricia McKenna

PDI47470M Palle Ibsen

PHF38899M Peter Franken

PMA42628M Paolo Accorti

POK93028M Pirkko Koskitalo

PSA89086M Pedro Afonso

PSP68661F Paula Parente

PTC11962M Philip Cramer

PXH22250M Paul Henriot

R-M53550M Roland Mendel

RBM23061F Rita Muller

SKO22412M Sven Ottlieb

TPO55093M Timothy O'Rourke

VPA30890F Victoria Ashworth

Y-L77953M Yoshi Latimer

Suppose you wanted to sort by emp_id, but you wanted all the emp_id fields with the dash character to
magically rise to the top. Use string manipulation and the CASE statement once again:

SELECT emp_id, fname, lname
FROM employee
ORDER BY

CASE WHEN LEFT(emp_id, 2) LIKE '%-' THEN
 0
ELSE
 1
END

, emp_id, lname, fname

The equivalent query in MS Access would be:

SELECT emp_id, fname, lname
FROM Employee
ORDER BY
IIF(left(emp_id,2) LIKE '*-',0,1)
,emp_id, lname, fname;

The Access IIF statement is saying "If the left 2 characters contain any number of characters followed by
a - sign, use 0 to sort by, otherwise use 1."

In SQL Server you can also simply use a PATINDEX function :

SELECT emp_id, fname, lname
FROM employee
ORDER BY
patindex('_-%',emp_id) desc
, emp_id, lname, fname

The PATINDEX function returns a 1 or a 0. If the second character is a '-' character, it will return 1. We
order the field in DESC order because we want the 1 at the top, and the 0 at the bottom. Notice the emp_id
field is still in perfect alphabetical order otherwise. The resulting sort order looks like this:

emp_id fname lname

A-C71970F Aria Cruz

A-R89858F Annette Roulet

F-C16315M Francisco Chang

H-B39728F Helen Bennett

L-B31947F Lesley Brown

M-L67958F Maria Larsson

M-P91209M Manuel Pereira

M-R38834F Martine Rance

R-M53550M Roland Mendel

Y-L77953M Yoshi Latimer

AMD15433F Ann Devon

ARD36773F Anabela Domingues

CFH28514M Carlos Hernadez

CGS88322F Carine Schmitt

DBT39435M Daniel Tonini

DWR65030M Diego Roel

ENL44273F Elizabeth Lincoln

GHT50241M Gary Thomas

HAN90777M Helvetius Nagy

HAS54740M Howard Snyder

JYL26161F Janine Labrune

KFJ64308F Karin Josephs

KJJ92907F Karla Jablonski

LAL21447M Laurence Lebihan

MAP77183M Miguel Paolino

MAS70474F Margaret Smith

MFS52347M Martin Sommer

MGK44605M Matti Karttunen

MJP25939M Maria Pontes

MMS49649F Mary Saveley

PCM98509F Patricia McKenna

PDI47470M Palle Ibsen

PHF38899M Peter Franken

PMA42628M Paolo Accorti

POK93028M Pirkko Koskitalo

PSA89086M Pedro Afonso

PSP68661F Paula Parente

PTC11962M Philip Cramer

PXH22250M Paul Henriot

RBM23061F Rita Muller

SKO22412M Sven Ottlieb

TPO55093M Timothy O'Rourke

VPA30890F Victoria Ashworth

Forcing NULL to the Bottom

Another time you might want to force a column to the bottom is if the column contains a NULL. The
easiest way to do this is to use the ISNULL function in SQL Server (other databases have similar
functions).

SELECT Col001, Col002, Col003, Col004
FROM testtable
ORDER BY col002
, isnull(col004,'zzzzzzz')
, col001
, col003

Here we are just forcing the column to the bottom with a string of characters that is guaranteed to be last
in a sort order.

Another way to do it is like this:

SELECT Col001, Col002, Col003, Col004
FROM testtable
ORDER BY col002
, CASE WHEN col004 IS NULL THEN 1 else 0 end
, col001
, col003

The Microsoft Access approach would be to use the IIF construct, once again:

SELECT Col001, Col002, Col003, Col004
FROM testtable
ORDER BY col002
, IIF(isnull(col004),1,0)
, col001;
, col003;

Ordering within a Subgroup

The last item I want to talk about is perhaps the most complex, as it deals with transactional data.
Transactional data does not conform to standard relational database structure. Your field names and field
mappings will not describe the data, because you have two different types of rows, identified by a key
field. Because the fields do not have the same type of data in each row (and the "20" rows contain one less
field), the naming of the fields becomes insignificant. The first column could be named "key" and the
second column could be named "recordNumber", but the remaining columns have differing data. For that
reason, I'll simply refer to them as col001, col002, col003, and col004. This is how they are named
automatically by SQL Server as the data is imported.

Transactional data is typically stored in a text file as an output from another database system, data
received from a client for processing by you, or data that has been generated as a report.

'10','1','Tom','Muck'
'20','1','ColdFusion'
'20','1','Flash Remoting'
'10','2','Ray','West'
'20','2','Dreamweaver MX'
'20','2','ASP.NET'
'20','2','SQL Server'
'20','2','Content Management'
'10','3','Massimo','Foti'
'20','3','ColdFusion'
'20','3','JavaScript'
'20','3','Dreamweaver MX'

As you can see, the highlighted fields are the key fields in the data. Data is stored initially in sequential

order in a text file, but when imported to SQL, the only way to retrieve the results in any kind of order is
by using an ORDER BY clause and ordering by the second column (the record number). However, if you
do this, your transactional order will be lost, because there is no line number. We can order on subgroups
as long as our original record number (col002) is the column that we want to sort on for the results. Try
the following statement:

SELECT Col001, Col002, Col003, Col004
FROM TransactionalTable
ORDER BY col002
, col001
, col003

Your result will look like this:

Col001 Col002 Col003 Col004

10 1 Tom Muck

20 1 ColdFusion

20 1 Flash Remoting

10 2 Ray West

20 2 ASP.NET

20 2 Content Management

20 2 Dreamweaver MX

20 2 SQL Server

10 3 Massimo Foti

20 3 ColdFusion

20 3 Dreamweaver MX

20 3 JavaScript

The third column in the subgroup of the "20" records is now sorted. If you want to sort by some other
field, however, such as col004 (the last name in the "10" rows), you would have a hard time trying to use
standard SQL syntax. Sorting on last name is easy -- carrying the "20" records along with that name is the
hard part.

It turns out the easiest way to do this is to create another field on the fly to act as the last name field. We'll
populate the field with the last name in col004 for the "10" records, and populate the new field with that
name for the "20" records. Sound easy? It's not, but once you have the code you can use it for any
situation where you have to group records. The SQL is as follows:

SELECT t.col001, t.col002, col003, col004
FROM TransactionalTable t
ORDER BY
CASE when col001 = '10' THEN
 col004
ELSE
 (SELECT col004 from TransactionalTable where col002 = t.col002 and col001 = '10')
end
, col001, col003

We created the new field on the fly in the ORDER BY clause using CASE. In the "10" rows, we merely
use col004 as is. In the "20" rows, we pull the col004 from the matching record in the "10" row. That fills
up the field so that the record remains grouped together in the ORDER BY clause. Then we merely sort on
col001, which floats the "10" records to the top of each group, and then col003, which orders the items
within the "20" group.

In MS Access you can't create this query in one pass, but you can turn it into two queries: one can be a
saved query named Transaction1:

SELECT t.col001, t.col002, col003, col004
, (SELECT col004 from TransactionalTable where col002 = t.col002 and col001 = '10') as DUMMY
FROM TransactionalTable t;

This creates a temporary view of the data with the added column holding the last name field (col004).
Then you can run a query against this view and order it the way you want:

SELECT col001, col002, col003, col004
FROM Transaction1
ORDER BY dummy, col001, col003;

Conclusion

Ordering your results can be enhanced with a few simple tricks. Many web programmers are content to
learn a few SQL keywords, but there are a lot of useful functions in the SQL language that make it easy to
return the results that you need, and in any order that you need them.

Keywords
SQL, Dreamweaver, ASP.NET, ASP, ColdFusion, PHP, JSP, DW, SQL Server

